

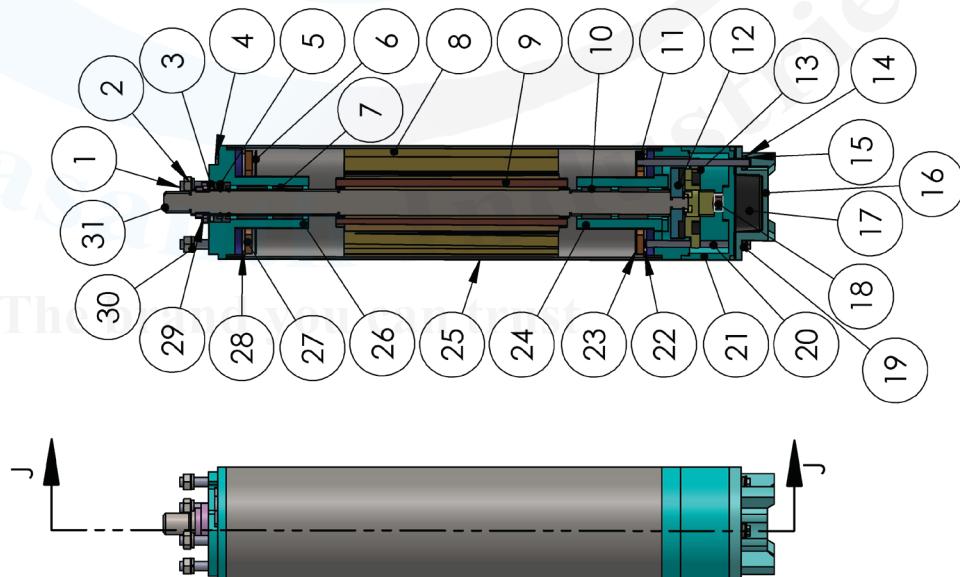
SUBMERSIBLE V4

MOTOR
DRAWING

PUMP
DRAWING

ASSEMBLY
DRAWING

BOM


V3 SUBMERSIBLE PUMP

OPI V3 TECHNICAL
DRAWING

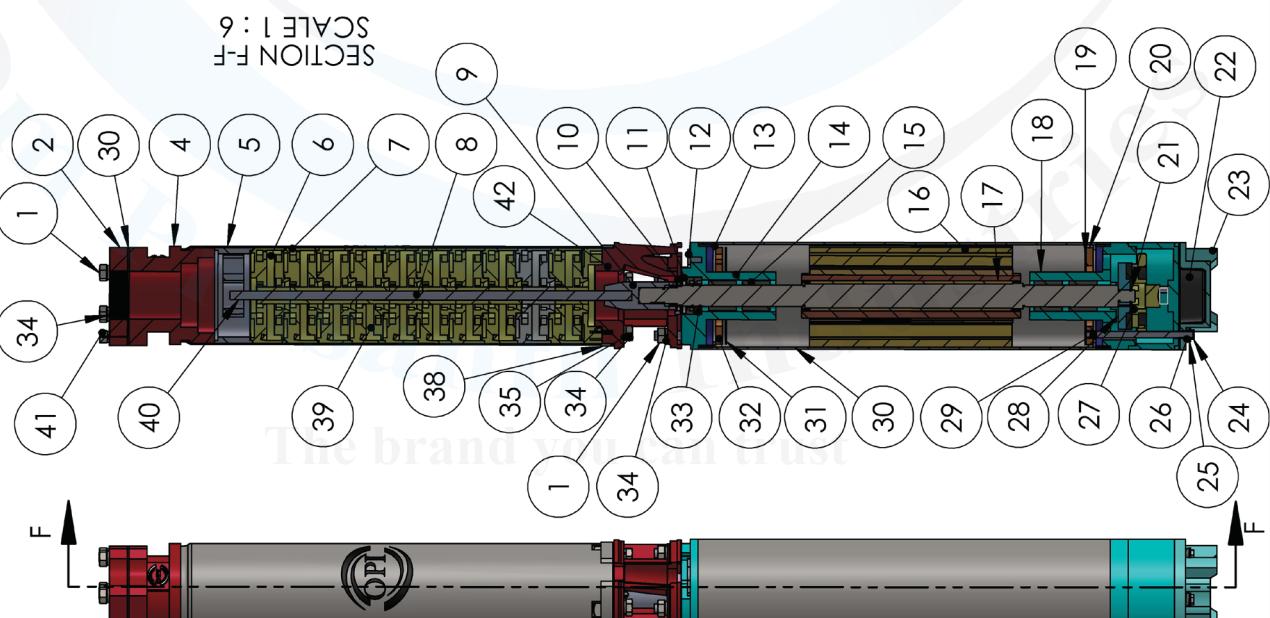
■ 11. SECTION VIEW OF V4 SUBMERSIBLE MOTOR


ITEM NO.	PART NUMBER
1	STUD - 8mm
2	NUT - 8mm
3	SS SAND GAURD
4	SS CABLE GAURD
5	OIL SEAL
6	UPPER COIL SAFETY RUBBER
7	CARBON BUSH
8	STATOR STAMPING
9	COPPER ROTOR STAMPING
10	CARBON BUSH
11	LOWER STUD RING
12	THRUST PAD
13	BEARING
14	SS WASER
15	NUT - 6mm
16	LEG
17	DIAPHRAGM RUBBER
18	GRUB SCREW
19	TAPER "O" RING
20	LEG STUD - 6mm

SCALE 1 : 9
SECTION J-J

■ 12. SECTION VIEW OF V4 SUBMERSIBLE PUMP

ITEM NO.	PART NUMBER
1	SPRING WASER - 8mm
2	HEX NUT - 8mm
3	NRV STUD
4	NRV FLANGE
5	NRV FLANGE WASER
6	NRV
7	PUMP BODY
8	PUMP IMPELLER
9	PUMP BOWL
10	PUMP SLEEVE
11	PUMP SHAFT
12	IP
13	PUMP COUPLING
14	HEX BOLT - 8mm
15	SPRING WASER - 8mm
16	SQUARE NUT - 8mm
17	TOP DOL



SECTION H-H
SCALE 1 : 4

OM PRASANTH INDUSTRIES

■ 13. SECTION VIEW OF V4 SUBMERSIBLE PUMP AND MOTOR ASSEMBLY

ITEM NO.	PART NUMBER	ITEM NO.	PART NUMBER
1	NRV STUD	26	TAPER "O" RING
2	NRV FLANGE	27	BEARING
3	NRV FLANGE WASER	28	THRUST PAD
4	NRV	29	LEG STUD
5	PUMP BODY	30	MOTOR BODY
6	PUMP IMPELLER	31	UPPER COIL SAFETY RUBBER
7	PUMP BOWL	32	UPPER STUD RING
8	PUMP SHAFT	33	OIL SEAL
9	PUMP COUPLING	34	SPRING WASER - 8mm
10	MOTOR SAND GAURD	35	HEX BOLT - 8mm
11	SS SAND GAURD	38	SQUARE NUT- 8mm
12	SS SAND GAURD	39	IMPELLER
13	BODY CIRCLIP	40	PUMP SHAFT
14	UPPER HOUSING	41	NRV STUD
15	CARBON BUSH		
16	STATOR		
17	COPPER ROTOR WITH SHAFT		
18	LOWER HOUSING		
19	LOWER COIL SAFETY RUBBER		
20	LOWER STUD RING		
21	BEARING CIRCLIP		
22	DIAPHRAGM RUBBER		
23	LEG		
24	NUT - 6mm		
25	PLATE WASER		

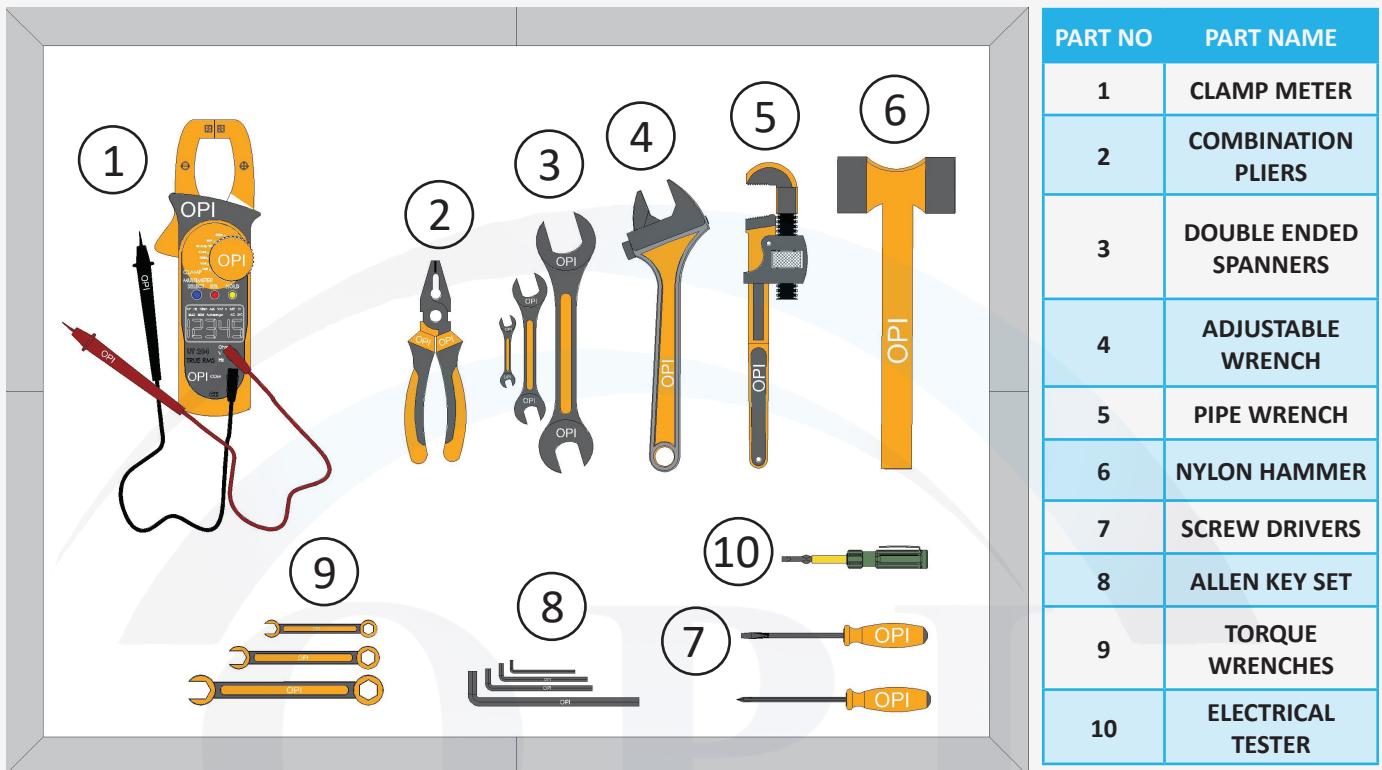
SUBMERSIBLE V3

TOOLS
REQUIRED

PRE
INSTALL

CABLE
JOINT

ERCTION
PROCESS


**OPI
INSTALLATION
GUIDE**

HOW TO INSTALL V3 SUBMERSIBLE PUMP

OPI V3 INSTALLATION MANUAL

■ 14. TOOLS AND THEIR USES IN SUBMERSIBLE PUMP ERECTION

The following tools play a crucial role in the erection process of a submersible pump. Each tool is designed to assist in specific tasks, ensuring proper installation, connection, and testing.

1. Clamp Meter

Purpose:

- Measures electrical parameters such as current, voltage, and resistance during motor testing and setup.

Notes:

Always use the clamp meter to verify electrical conditions for safe operation.

Caution:

Improper use can lead to incorrect readings or potential electrical hazards.

2. Combination Pliers

Purpose:

- Used for cutting, bending, and securing electrical cables.
- Tightens or adjusts small fittings during assembly.

Notes:

Ensure the pliers' grip is firm when tightening or cutting cables.

Caution:

Sharp edges or excessive force may cause injury or damage to components.

3. Open-End and Ring Spanners

 Purpose:

- Tightens or loosens nuts and bolts on flanges, clamps, and pipe joints.

 Notes:

Use the correct size spanner to avoid damage to bolts and nuts.

 Caution:

Over-tightening can cause damage to the flanges or threads.

4. Adjustable Wrench

 Purpose:

- Provides versatility for applications where bolt sizes vary.
- Useful for assembling or disassembling delivery pipe joints.

 Notes:

Ensure the adjustable wrench is securely fitted before applying force.

 Caution:

Misuse can cause slipping, leading to injury or damage to joints.

5. Pipe Wrench

 Purpose:

- Essential for gripping and tightening threaded pipe joints during delivery pipe assembly.

 Notes:

Make sure the wrench is properly adjusted to fit the pipe size.

 Caution:

Improper handling can cause damage to pipe threads and fittings.

6. Nylon Hammer

 Purpose:

- Aligns flanges or gently taps pipe connections into position without causing damage.

 Notes:

Use controlled force to avoid damaging sensitive components.

 Caution:

Excessive force can damage components or cause injury.

7. Screwdrivers (Flathead and Phillips)

Purpose:

- Secures screws in electrical terminals or flange covers.
- Used during control panel wiring and fastening.

Notes:

Ensure the screwdriver is in good condition to prevent stripping screws.

Caution:

Do not force a screwdriver into tight screws, as this can cause injury or damage.

8. Allen Keys

Purpose:

- Tightens or loosens hexagonal bolts, commonly used in motor mounts or coupling assembly.

Notes:

Ensure the Allen key fits snugly into the bolt to prevent damage.

Caution:

Over-torquing may cause bolts to break or deform the key.

9. Double-Ended Spanners

Purpose:

- Ideal for tasks requiring two different sizes of bolts or nuts during pump installation.

Notes:

Use the appropriate end for each bolt size to maintain proper torque.

Caution:

Incorrect use can damage bolts and nuts or cause injury.

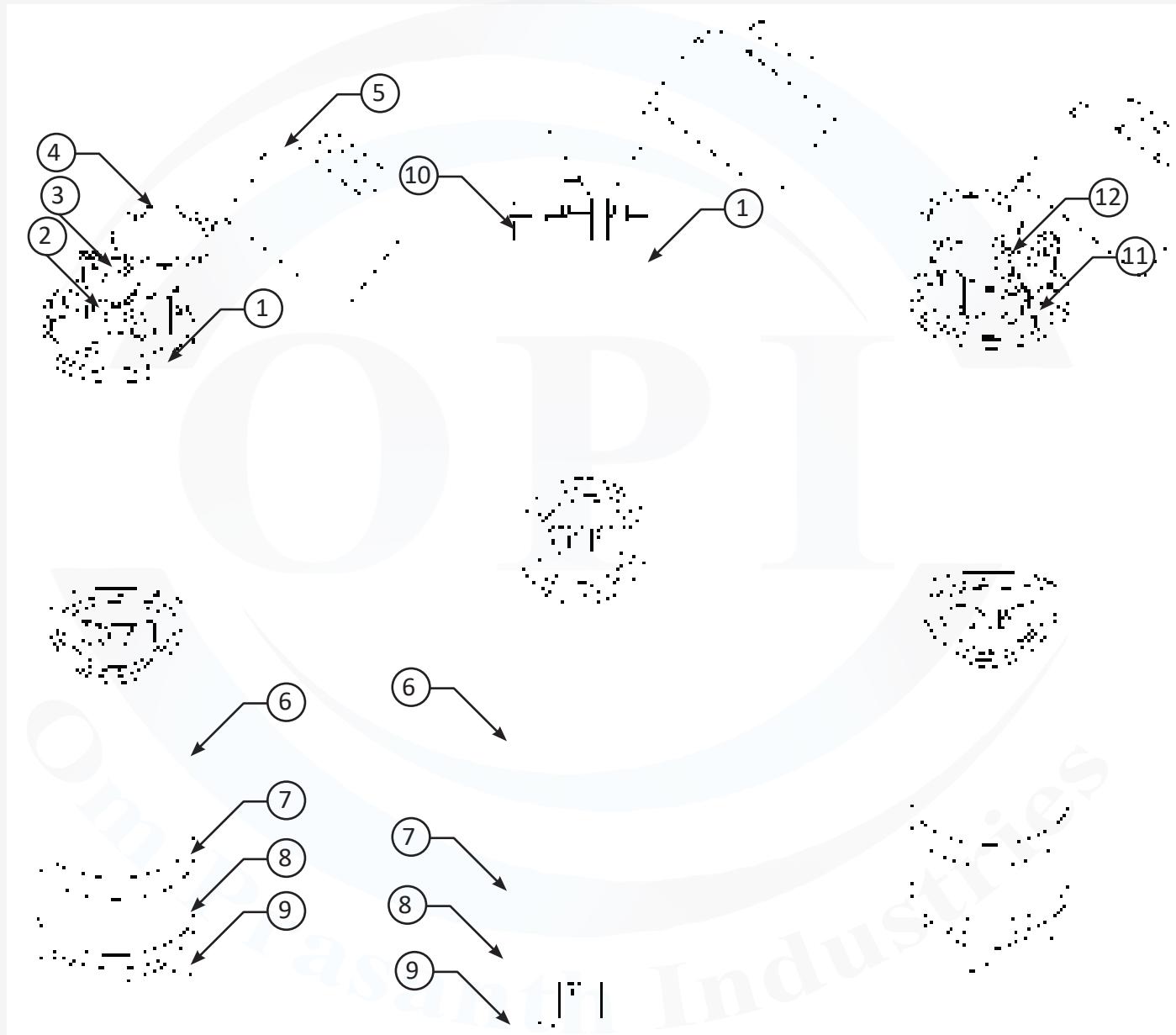
10. Tightening Torque Wrenches

Purpose:

- Ensures precise tightening of bolts to avoid over-tightening or loose connections.

Notes:

Always follow the manufacturer's specified torque values.


Caution:

Failure to use a torque wrench properly can lead to under-tightening or over-tightening, both of which could impact the system's safety and performance.

15. SCHEMATIC INSTALLATION :

The V3 submersible motor comes pre-filled with a mixture of clear cold drinking water and anti-corrosive liquid. To ensure proper operation and durability, follow the steps below before installation.

PART NO	PART NAME
1	UPPER HOUSING
2	SANDGAURD RUBBER
3	ROTOR SHAFT
4	FUNNEL

PART NO	PART NAME
5	CUP
6	MOTOR BODY
7	LOWER HOUSING
8	BEARING HOUSING

PART NO	PART NAME
9	LEG
10	STUD AND NUT
11	CABLE OUTPUT
12	DRY PLUG NUT

16. SCHEMATIC INSTALLATION PROCEDURE :

The V3 submersible motor comes pre-filled with a mixture of clear cold drinking water and anti-corrosive liquid. To ensure proper operation and durability, follow the steps below before installation.

Step 1: Position the Motor

 Action: Place the motor vertically on a stable and level base.

 Notes:

- Ensure the motor remains upright during the entire installation process to avoid internal component damage.

 Caution: Tilting the motor can cause uneven water distribution and potential damage to internal parts.

Step 2: Check the Fasteners

 Action: Inspect all visible fasteners and screws on the motor.

 Notes:

- Tighten any loose bolts or screws using appropriate tools.
- Pay special attention to the top and bottom flanges to ensure they are securely fastened.

 Caution: Loose fasteners can lead to vibrations and improper motor operation.

Step 3: Remove Threaded Plugs

 Action: Identify the two threaded plugs located on the top or circumference of the motor casing.

 Instructions:

- Carefully unscrew and remove the plugs using a wrench, as shown in Fig. 1 below.

 Caution: Do not overtighten when removing plugs, as this may damage the threads.

Step 4: Top Up with Pure Drinking Water

 Filling Process:

- Using a clean funnel, pour clear cold drinking water into the motor through the plug openings.
- Gently rock the motor back and forth to release trapped air bubbles.
- Recheck the water level after air bubbles escape and top up if necessary.

 Important Notes:

- Always use clean, potable water to maintain internal motor integrity.
- Avoid overfilling the motor. The water level should just reach the recommended mark.

Step 5: Reassemble the Threaded Plugs

 Action: Once the motor is filled, reinsert the threaded plugs.

 Notes:

- Tighten the plugs securely to prevent water leakage.

 Caution: Improper tightening of the plugs may cause leaks and reduce motor performance.

Step 6: Inspect for Leakage

 Action: Dry the motor's exterior with a clean cloth and inspect for water leakage.

 Checklist:

- If leakage is detected, recheck the threaded plugs and tighten as needed.
- Ensure no water escapes from any motor joints or seals.

 Caution: Do not proceed with installation if leakage persists. This can compromise motor performance.

Step 7: Prepare for Coupling

 Action: Align the motor shaft keyway with the pump coupling.

 Steps:

- Carefully slide the coupling over the motor shaft until it rests securely on the sand guard.
- Ensure proper alignment for smooth operation.

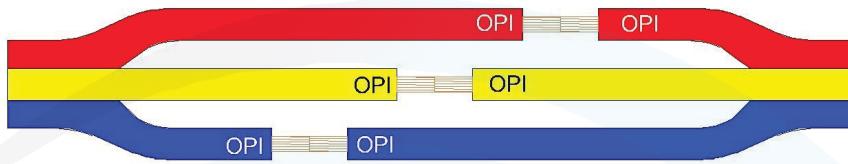
 Caution: Misalignment of the coupling may cause vibration and reduce system efficiency.

Visual Reference: Fig. 1 – Filling the Motor

(Add a diagram showing the threaded plugs being removed and water being filled with a funnel, similar to the original image.)

Final Checklist

Before proceeding to install the motor with the pump:


- Ensure the motor is upright and securely positioned.
- Verify that no water is leaking from the motor.
- Confirm that the coupling is properly aligned and tightly fastened.

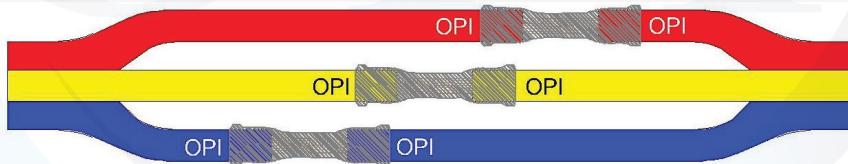
17. CABLE JOINT PROCEDURE :

Procedure for Joining and Insulating the 3-Core Conductors

This guide outlines the step-by-step process for securely joining and insulating 3-core conductors, ensuring long-term performance and safety in underwater applications. Each step includes precautions to maintain proper insulation and prevent water ingress.

Step 1: Conductor Preparation and Jointing

 Action:


- Solder or knot the copper strands of each core to ensure a **solid electrical connection**.

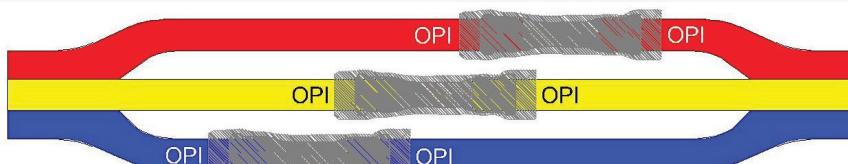
 Notes:

- Align the cores properly to prevent overlapping or improper positioning.
- Use high-quality solder or secure mechanical knots for durability.

 Caution: Poor alignment or weak soldering can lead to electrical failure or overheating.

Step 2: Layer 1 – Virgin Rubber Insulation

 Action:


- Wrap the first layer of **virgin rubber insulation** tightly around each conductor joint.

 Notes:

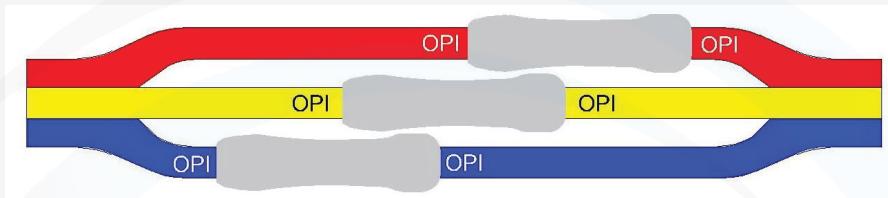
- Ensure the wrapping **slightly overlaps** beyond the conductor's insulation ends to maintain uniform thickness.

 Caution: Gaps in the rubber insulation can expose the joint, leading to water ingress or short circuits.

Step 3: Layer 2 – PVC Insulation Tape

 Action:

- Apply the first layer of **PVC insulation tape** over the virgin rubber insulation.


 Notes:

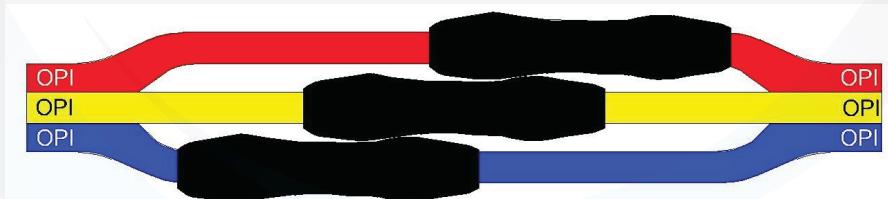
- Start wrapping from one end of the joint and overlap evenly to create a **seamless layer**.

 Caution: Poor alignment or weak soldering can lead to electrical failure or overheating.

Step 4: Layer 3 – Virgin Rubber Insulation

 Action:

- Add a second layer of **virgin rubber insulation** over the PVC tape for **enhanced insulation**.


 Notes:

- Ensure complete coverage with no gaps or exposed areas.

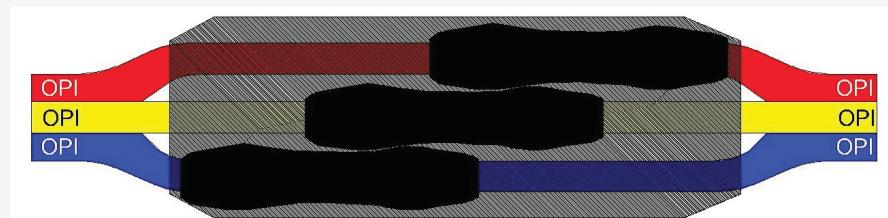
 Caution: Missing areas or inconsistent wrapping can compromise insulation quality.

Step 5: Layer 4 – PVC Insulation Tape

 Action:

- Apply a second layer of **PVC insulation tape** as the **final protective layer** for each core.

 Notes:


- Use consistent tension during wrapping to avoid wrinkling or loose sections.

 Caution: Loose sections can allow moisture to seep into the joint, causing failure.

Procedure for Joining and Insulating the Cable Joint for Underwater Application

Step 6: Layer 1 – Virgin Rubber Insulation (Cable Level)

 Action:

- Wrap a layer of **virgin rubber insulation** tightly around the **entire cable joint**, covering all cores.

 Notes:

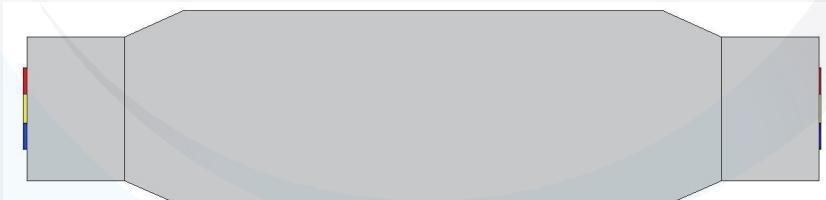
- Ensure the layer is smooth and free from gaps to **prevent water ingress**.

 Caution: Inadequate insulation at this stage may lead to water penetration and system damage.

Step 7: Layer 2 – PVC Insulation Tape (Cable Level)

 Action:

- Apply the first layer of **PVC insulation tape** over the virgin rubber insulation for **added strength and water resistance**.


 Coverage:

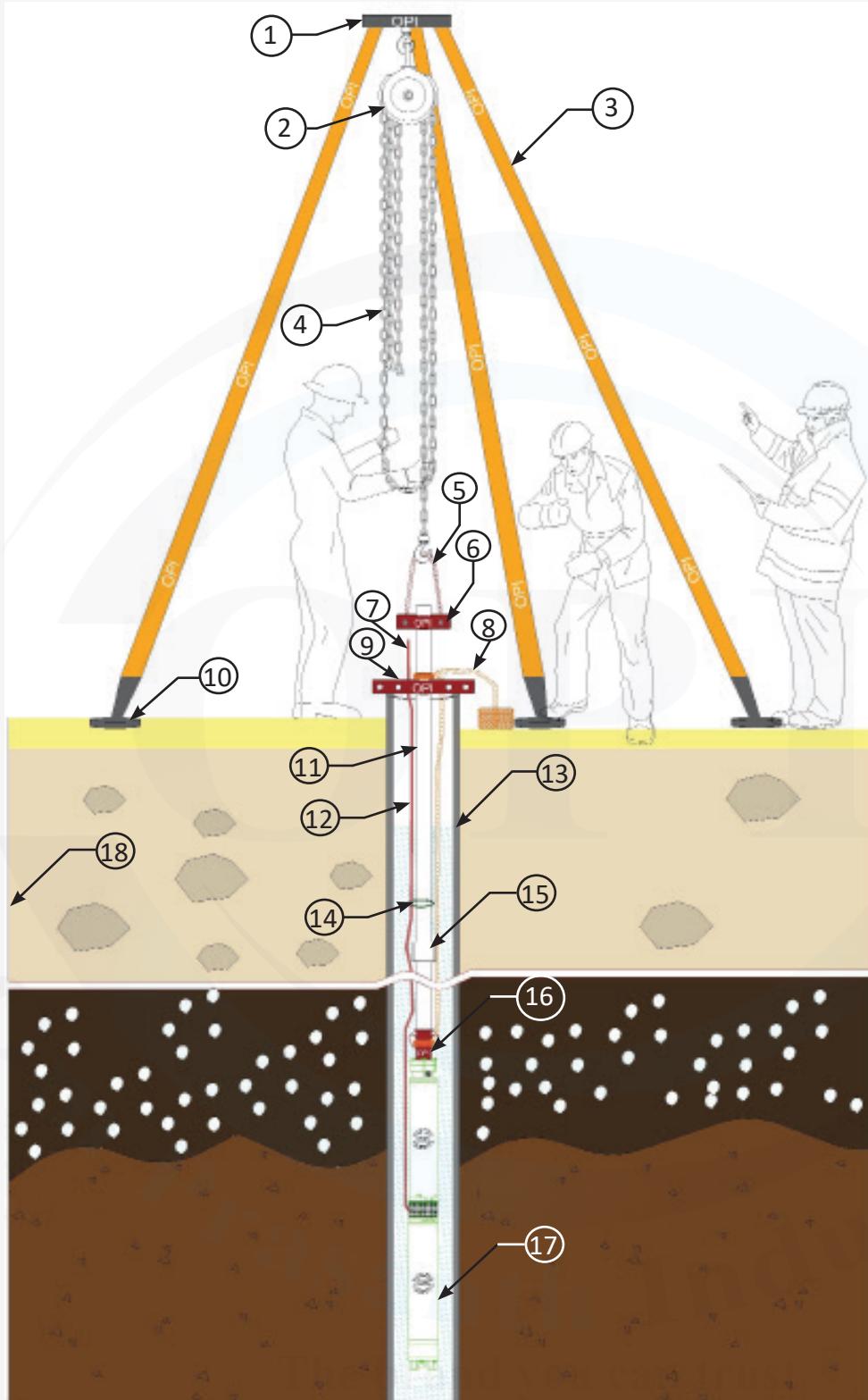
- Extend the wrapping slightly beyond the ends of the virgin rubber layer.

 Caution: Overlapping inconsistently may leave weak spots in the insulation.

Step 8: Layer 3 – PVC Insulation Tape (Final Layer)

 Action:

- Add a **second layer of PVC insulation tape** to complete the joint insulation.


 Notes:

- Wrap tightly with adequate overlap to ensure a **secure seal**.

 Caution: Improper sealing of the final layer can lead to insulation failure, especially in underwater applications.

3" BOREWELL SUBMERSIBLE PUMPSET -OPI V3

18. ERECTION DIAGRAM FOR SUBMERSIBLE "V6"- (RADIAL FLOW)

PART NO	PART NAME	PART NO	PART NAME	PART NO	PART NAME	PART NO	PART NAME
1	WINCH HEAD	6	SUPPORT CLAMP	11	DELIVERY PIPE	16	ADAPTOR
2	WINCH	7	CABLE	12	CABLE	17	OPI PUMPSETS
3	TRIPOD	8	NYLON ROPE	13	CASING PIPE	18	SAND LAYERS
4	CHAIN	9	CLAMP	14	CABLE CLIP		
5	STEEL ROPE	10	TRIPOD BASE	15	TRIPOD BASE		

■ 19. ERECTION INSTRUCTUION FOR A SUBMERSIBLE PUMP :

Follow these steps to ensure the safe and proper erection of a submersible pump. Safety precautions and critical warnings are marked with a caution symbol (⚠).

Pre-Erection Preparations

1. Verify Components :

Inspect the Equipment:

- Check the pump, motor, delivery pipe, and all accessories for any signs of damage or defects.

Ensure Tool Availability:

- Gather all necessary tools, including a **tripod, chain pulley, clamps, and safety gear**.

 Caution: Ensure all components are compatible and free from visible defects. Using damaged equipment can lead to operational failure.

2. Inspect the Borewell

Check Dimensions:

- Measure the **borewell depth and diameter** to confirm compatibility with the pump and motor assembly.

Clean the Borewell:

- Ensure the borewell is free of debris or obstructions to facilitate smooth installation.

 Caution: Ensure the borewell is structurally sound to prevent collapse during pump installation.

3. Set Up the Lifting System

Assemble the Lifting System:

- Install a stable **tripod with a chain pulley hoist** above the borewell.

Ensure Safety:

- Verify the lifting setup can handle the pump's weight and movement safely.

 Caution: Double-check the lifting system's load capacity before use. An unstable setup may cause accidents.

4. Safety Measures

Wear Protective Gear:

- Equip all team members with **helmets, gloves, and boots** for safety.

Assign a Team Leader:

- Designate a leader to ensure clear communication and coordination during the process.

 Caution: Keep non-essential personnel away from the work area to avoid accidents.

Erection Process

Step 1: Assemble the Pump and Motor

Couple the Pump and Motor:

- Securely connect the pump and motor according to the manufacturer's instructions.

Check Alignment:

- Ensure the pump shaft rotates freely and is properly aligned.

Caution: Improper alignment can cause vibration and reduce the lifespan of the pump.

Step 2: Connect the Delivery Pipe

Attach the First Pipe Section:

- Connect the first section of the delivery pipe to the pump's discharge outlet.

Ensure Leak-Proof Connections:

- Use a rubber gasket or **Teflon tape** to create a tight, leak-proof seal.

Caution: Over-tightening connections may damage threads or cause leaks.

Step 3: Prepare the Cable

Connect the Submersible Cable:

- Attach the submersible cable to the motor terminals securely.

Protect the Cable:

- Secure the cable to the delivery pipe using **cable clips or guards** at regular intervals to prevent damage during installation.

Caution: Ensure cable insulation is intact to avoid electrical hazards.

Step 4: Lower the Pump into the Borewell

Secure the Lifting Hook:

- Attach a lifting hook or clamp to the delivery pipe and secure it to the chain pulley system.

Lower Carefully:

- Gradually lower the pump into the borewell, ensuring the cable and pipe remain straight and free from kinks.

Caution: Do not allow the pump to hit the borewell walls, as this may damage the pump or misalign the motor.

Step 5: Install Riser Pipe Sections

Add Pipe Sections as Needed:

- As the pump is lowered, connect additional riser pipe sections one at a time.

Tighten Joints Securely:

- Ensure all pipe joints are tightened firmly to prevent leaks or instability.

Caution: Use proper tools to avoid over-tightening or damaging pipe threads.

Step 6: Secure the Pump at the Surface

Fasten at the Borewell Opening:

- Once the pump is at the desired depth, secure the top of the riser pipe with a flange or clamp at the borewell opening.

Secure the Cable:

- Ensure the cable and pipe are safely fastened to prevent movement or damage.

⚠ Caution: Verify that all clamps and fastenings are secure to avoid accidental displacement during operation.

Post-Erection Steps

1. Electrical Connections

Connect to the Control Panel:

- Attach the submersible cable to the control panel and ensure proper earthing.

Test Motor Direction:

- Briefly run the motor to verify it rotates in the correct direction.

⚠ Caution: Incorrect motor wiring may damage the pump or reduce efficiency. Double-check connections before testing.

2. System Testing

Check Water Flow:

- Open the delivery pipe outlet and run the pump briefly to check water flow and pressure.

Inspect for Issues:

- Look for leaks, unusual noises, or vibrations during operation.

⚠ Caution: Do not run the pump for an extended time during testing without proper water flow.

3. Final Adjustments

Secure All Components:

- Fasten all clamps, cable guards, and control panel wiring securely.

Seal the Borewell Opening:

- Ensure proper sealing at the borewell opening to prevent contamination.

⚠ Caution: Ensure the borewell sealing material is non-reactive and does not degrade over time.

The brand you can trust

Maintenance Tips

- Conduct periodic inspections of the cable, pipe joints, and motor performance.
- Avoid running the pump in dry conditions to prevent damage to the motor and impellers.
- Clean or replace NRVs and other fittings as required to maintain efficiency.

⚠ Caution: Regular maintenance is essential to prevent operational failures and extend the

3" BOREWELL SUBMERSIBLE PUMPSET -OPI V3

20. INSTALLATION SCHEMATIC DIAGRAM FOR OPI SUBMERSIBLE PUMP "V4"

PART NO	PART NAME	PART NO	PART NAME
1	GATE VALVE (OR) BALL VALVE	5	CABLE CLIP
2	NRV (NON RETURN VALVE	6	DELIVERY PIPE
3	CLAMP	7	COUPLING
4	NYLON ROPE	8	ADAPTOR
9	OPI SUBMERSIBLE V4	10	BORE MANUAL
10		11	SAND LAYERS
11		12	OPI CONTROL PANEL
13	CASING PIPE	14	OVER HEAD TANK
15	CABLE		

21. INSTALLATION CHECKLIST AND PROCEDURE :

1. Check Power Supply Stability

⚡ Confirm Voltage Regulation:

- Measure voltage fluctuation levels to ensure a steady supply within motor tolerance.

⚠ Caution: Unstable voltage can lead to motor burnout or erratic operation.

2. Prepare Installation Environment

🔧 Inspect Site Accessibility:

- Ensure the borewell surroundings are clean, stable, and accessible for tools and personnel.

✓ Evaluate Ambient Conditions:

- Ensure the area is free of moisture or electrical hazards during wiring connections.

⚠ Caution: A cluttered or unsafe environment can compromise worker safety.

Installation Steps

1. Mount Control Panel

✓ Securely Install Panel:

- Mount the control panel on a wall or stand within easy access but away from direct sunlight or moisture.

✓ Verify Circuit Breaker Connections:

- Confirm that the main breaker and motor protection relays are properly connected.

⚠ Caution: Improper wiring can result in short circuits or equipment failure.

2. Connect Additional Monitoring Systems

✓ Install Safety Devices:

- Integrate overload protection, dry-run sensors, and thermal cut-outs.

✓ Test Alarm Systems:

- Activate the alarms for low water levels and high motor temperatures.

⚠ Caution: Failure to implement safety monitoring may void warranties and increase risk.

3. Priming Water Discharge System

✓ Bleed Air from Pipes:

- Open the delivery valve slightly to remove air pockets from the pipe system.

⚠ Caution: Entrapped air can lead to inefficient operation or water hammer effects.

4. Ensure Proper Cable Route

Organize Cables:

- Arrange and secure electrical cables neatly to avoid contact with sharp edges or heat sources.

⚠ Caution: Avoid loose or entangled cables that can pose tripping hazards or lead to insulation damage.

Post-Installation Steps

1. Environmental Testing

Check System Integrity:

- Monitor the system under operational conditions to ensure vibration dampers and clamps remain secure.

Analyze Water Quality:

- Ensure that the initial discharge water is free of contaminants such as sand or sediment.

⚠ Caution: Persistently dirty water may indicate installation issues or borewell contamination.

2. Documentation and Handover

Record Installation Parameters:

- Log key metrics like pump depth, motor amperage, and voltage readings during the trial run.

Provide User Training:

- Educate the user on operating procedures, control panel usage, and basic troubleshooting.

⚠ Caution: Lack of proper documentation or training can lead to user errors or maintenance delays.

25. Piping and Valve Placement Guidelines for Submersible Pump Output

1. Distance Between Pipe Bends and Valves

Valve Placement Near Bends

 Install the first valve (such as a gate or ball valve) at a distance of at least 2–3 feet from the bend to ensure smooth flow and reduce turbulence.

⚠ Caution: Placing valves too close to bends can result in uneven flow and potential wear on the valve.

2. Pipe to Valve Distances

First Valve from Pump Outlet

 Place the first control valve (e.g., a gate valve) within 4–6 feet from the pump outlet to facilitate maintenance and flow control.

Additional Valves

 For longer pipelines, place valves at intervals of 50–60 feet to allow for easier maintenance and flow regulation.

⚠ Caution: Ensure the pipeline remains accessible for valve operation.

3. Non-Return Valve (NRV) Placement

Location for NRV

 Install the NRV directly above the pump outlet to prevent water backflow and pressure loss.

 Caution: Ensure the NRV is securely fastened and positioned correctly to avoid leakage.

4. Support and Stability

Pipe Clamp Distance

 Provide pipe clamps or supports every 10–12 feet along the delivery pipe to prevent sagging or misalignment.

Anchor Near Valves and Bends

 Use additional supports near valves and bends to handle vibrations and prevent displacement.

 Caution: Loose clamps may lead to pipe damage or disconnections over time.

6. Final Delivery Pipe Connection

Delivery to Distribution Point

 Ensure the output pipe is directed to the distribution point with a gradual slope to avoid water hammer or sudden pressure changes.

Flexible Joint

 Use a flexible coupling or joint near the pump outlet to accommodate minor vibrations and movement.

Joining Standards:

 For threaded pipes, use Teflon tape or pipe sealant to avoid leaks. For HDPE pipes.

The brand you can trust

3" BOREWELL SUBMERSIBLE PUMPSET -OPI V3

OM PRASANTH INDUSTRIES