

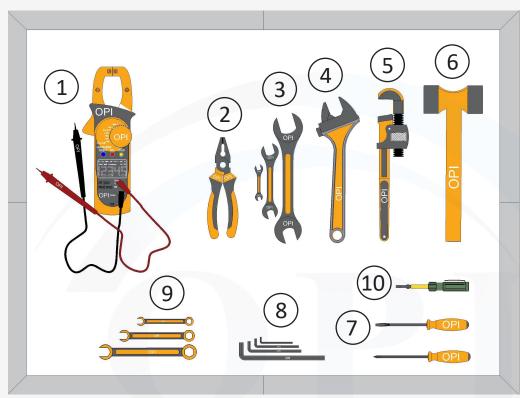
TOOLS REQUIRED

PRE **INSTALL**

CABLE JOINT

ERECTION PROCESS

OPI INSTALLATION GUIDE


HOW TO INSTALL SUBMERSIBLE VERTICAL **OPENWELL**

OPI VERTICAL OPENWELL INSTALLATION MANUAL

11. TOOLS AND THEIR USES IN SUBMERSIBLE PUMP ERECTION

The following tools play a crucial role in the erection process of a submersible pump. Each tool is designed to assist in specific tasks, ensuring proper installation, connection, and testing.

PART NO	PART NAME
1	CLAMP METER
2	COMBINATION PLIERS
3	DOUBLE ENDED SPANNERS
4	ADJUSTABLE WRENCH
5	PIPE WRENCH
6	NYLON HAMMER
7	SCREW DRIVERS
8	ALLEN KEY SET
9	TORQUE WRENCHES
10	ELECTRICAL TESTER

1. Clamp Meter

V Purpose:

• Measures electrical parameters such as current, voltage, and resistance during motor testing and setup.

Notes:

Always use the clamp meter to verify electrical conditions for safe operation.

1 Caution:

Improper use can lead to incorrect readings or potential electrical hazards.

2. Combination Pliers

V Purpose:

- Used for cutting, bending, and securing electrical cables.
- Tightens or adjusts small fittings during assembly.

Notes:

Ensure the pliers' grip is firm when tightening or cutting cables.

! Caution:

Sharp edges or excessive force may cause injury or damage to components.

3. Open-End and Ring Spanners

V Purpose:

• Tightens or loosens nuts and bolts on flanges, clamps, and pipe joints.

Use the correct size spanner to avoid damage to bolts and nuts.

! Caution:

Over-tightening can cause damage to the flanges or threads.

4. Adjustable Wrench

V Purpose:

- Provides versatility for applications where bolt sizes vary.
- Useful for assembling or disassembling delivery pipe joints.

Ensure the adjustable wrench is securely fitted before applying force.

! Caution:

Misuse can cause slipping, leading to injury or damage to joints.

5. Pipe Wrench

Purpose:

• Essential for gripping and tightening threaded pipe joints during delivery pipe assembly.

Make sure the wrench is properly adjusted to fit the pipe size.

Caution:

Improper handling can cause damage to pipe threads and fittings.

6. Nylon Hammer

Purpose:

Aligns flanges or gently taps pipe connections into position without causing damage.

Notes:

Use controlled force to avoid damaging sensitive components.

! Caution:

Excessive force can damage components or cause injury.

7. Screwdrivers (Flathead and Phillips)

V Purpose:

- Secures screws in electrical terminals or flange covers.
- Used during control panel wiring and fastening.

Ensure the screwdriver is in good condition to prevent stripping screws.

Do not force a screwdriver into tight screws, as this can cause injury or damage.

8. Allen Keys

✓ Purpose:

• Tightens or loosens hexagonal bolts, commonly used in motor mounts or coupling assembly.

Ensure the Allen key fits snugly into the bolt to prevent damage.

! Caution:

Over-torquing may cause bolts to break or deform the key.

9. Double-Ended Spanners

V Purpose:

• Ideal for tasks requiring two different sizes of bolts or nuts during pump installation.

Notes:

Use the appropriate end for each bolt size to maintain proper torque.

! Caution:

Incorrect use can damage bolts and nuts or cause injury.

10. Tightening Torque Wrenches

✓ Purpose:

• Ensures precise tightening of bolts to avoid over-tightening or loose connections.

Notes:

Always follow the manufacturer's specified torque values.

! Caution:

Failure to use a torque wrench properly can lead to under-tightening or over-tightening, both of which could impact the system's safety and performance.

12. SCHEMATIC INSTALLATION PROCEDURE :

Installation Guide: V6 Submersible Motor

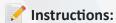
The V6 submersible motor comes pre-filled with a mixture of clear cold drinking water and anti-corrosive liquid. To ensure proper operation and durability, follow the steps below before installation.

Step 1: Position the Motor

 Ensure the motor remains upright during the entire installation process to avoid internal component damage.

Caution: Tilting the motor can cause uneven water distribution and potential damage to internal parts.

Step 2: Check the Fasteners


✓ Action:Inspect all visible fasteners and screws on the motor.

- Tighten any loose bolts or screws using appropriate tools.
- Pay special attention to the top and bottom flanges to ensure they are securely fastened.
- **A** Caution: Loose fasteners can lead to vibrations and improper motor operation.

Step 3: Remove Threaded Plugs

Action: Identify the two threaded plugs located on the top or circumference of the motor casing.

Carefully unscrew and remove the plugs using a wrench, as shown in Fig. 1 below.

! Caution: Do not overtighten when removing plugs, as this may damage the threads.

Step 4: Top Up with Pure Drinking Water

Filling Process:

- Using a clean funnel, pour clear cold drinking water into the motor through the plug openings.
- Gently rock the motor back and forth to release trapped air bubbles.
- Recheck the water level after air bubbles escape and top up if necessary.

Important Notes:

- Always use clean, potable water to maintain internal motor integrity.
- Avoid overfilling the motor. The water level should just reach the recommended mark.

Step 5: Reassemble the Threaded Plugs

Action: Once the motor is filled, reinsert the threaded plugs.

• Tighten the plugs securely to prevent water leakage.

! Caution: Improper tightening of the plugs may cause leaks and reduce motor performance.

Step 6: Inspect for Leakage

Action: Dry the motor's exterior with a clean cloth and inspect for water leakage.

- If leakage is detected, recheck the threaded plugs and tighten as needed.
- Ensure no water escapes from any motor joints or seals.

Caution: Do not proceed with installation if leakage persists. This can compromise motor performance.

Step 7: Prepare for Coupling

Action: Align the motor shaft keyway with the pump coupling.

Steps:

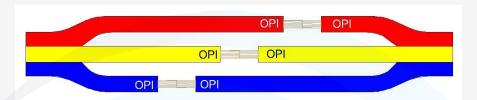
- Carefully slide the coupling over the motor shaft until it rests securely on the sand guard.
- Ensure proper alignment for smooth operation.

1 Caution: Misalignment of the coupling may cause vibration and reduce system efficiency.

Final Checklist

Before proceeding to install the motor with the pump:

- ✓ Ensure the motor is upright and securely positioned.
- ✓ Verify that no water is leaking from the motor.
- Confirm that the coupling is properly aligned and tightly fastened.



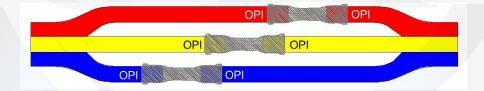
■ 13. CABLE JOINT PROCEDURE :

Procedure for Joining and Insulating the 3-Core Conductors

This guide outlines the step-by-step process for securely joining and insulating 3-core conductors, ensuring long-term performance and safety in underwater applications. Each step includes precautions to maintain proper insulation and prevent water ingress.

Step 1: Conductor Preparation and Jointing

Action:


• Solder or knot the copper strands of each core to ensure a **solid electrical connection**.

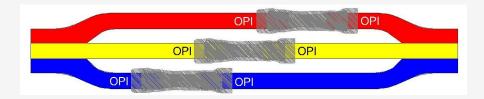
Notes:

- Align the cores properly to prevent overlapping or improper positioning.
- Use high-quality solder or secure mechanical knots for durability.

! Caution: Poor alignment or weak soldering can lead to electrical failure or overheating.

Step 2: Layer 1 - Virgin Rubber Insulation

Action:

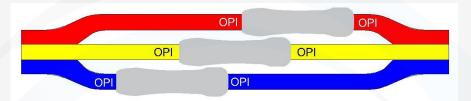

• Wrap the first layer of virgin rubber insulation tightly around each conductor joint.

Notes:

• Ensure the wrapping **slightly overlaps** beyond the conductor's insulation ends to maintain uniform thickness.

Caution: Gaps in the rubber insulation can expose the joint, leading to water ingress or short circuits.

Step 3: Layer 2 - PVC Insulation Tape



- **Action:**
- Apply the first layer of **PVC insulation tape** over the virgin rubber insulation.
- Notes:
- Start wrapping from one end of the joint and overlap evenly to create a seamless layer.

! Caution: Poor alignment or weak soldering can lead to electrical failure or overheating.

Step 4: Layer 3 - Virgin Rubber Insulation


- **Action:**
- Add a second layer of virgin rubber insulation over the PVC tape for enhanced insulation.
- Notes:
- Ensure complete coverage with no gaps or exposed areas.
- **A** Caution: Missing areas or inconsistent wrapping can compromise insulation quality.

Step 5: Layer 4 – PVC Insulation Tape

- Action:
- Apply a second layer of **PVC insulation tape** as the **final protective layer** for each core.
- Notes:
- Use consistent tension during wrapping to avoid wrinkling or loose sections.
- **A** Caution: Loose sections can allow moisture to seep into the joint, causing failure.

<u>Procedure for Joining and Insulating the Cable Joint for Underwater Application</u>
<u>Step 6: Layer 1 – Virgin Rubber Insulation (Cable Level)</u>

Action:

• Wrap a layer of **virgin rubber insulation** tightly around the **entire cable joint**, covering all cores.

Notes:

• Ensure the layer is smooth and free from gaps to prevent water ingress.

Caution: Inadequate insulation at this stage may lead to water penetration and system damage.

Step 7: Layer 2 - PVC Insulation Tape (Cable Level)

Action:

• Apply the first layer of **PVC insulation tape** over the virgin rubber insulation for **added strength and water resistance.**

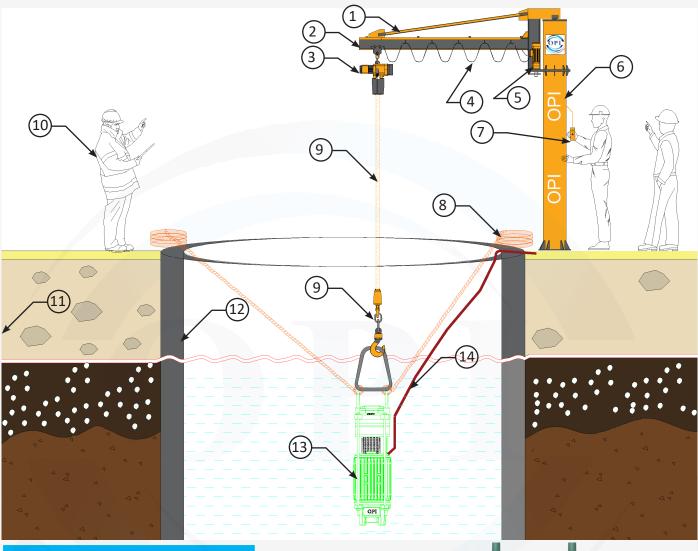
Coverage:

• Extend the wrapping slightly beyond the ends of the virgin rubber layer.

A Caution: Overlapping inconsistently may leave weak spots in the insulation.

Step 8: Layer 3 – PVC Insulation Tape (Final Layer)

Action:


Add a second layer of PVC insulation tape to complete the joint insulation.

Notes:

• Wrap tightly with adequate overlap to ensure a secure seal.

Caution: Improper sealing of the final layer can lead to insulation failure, especially in underwater applications.

14. ERECTION DIAGRAM FOR SUBMERSIBLE HORIZONTAL OPENWELL

PART NO	PART NAME
1	JIB ARM
2	ELECTRIC HOIST WITH TROLLEY
3	ELECTRIC MOTOR
4	WIRE
5	ELECTRIC MOTOR
6	VERTICAL SUPPORT COLUMN
7	REMOTE CONTROL
8	NYLON ROPE
9	STEEL ROPE & HOOK ASSEMBLY
10	WORKERS WITH SAFETY GEARS
11	UNDER GROUND SOIL LAYERS
12	WELL CASING
13	OPI HORIZONTAL OPENWELL
14	MOTOR CABLE

■ 15. ERECTION INSTRUCTUION FOR A HORIZONTAL OPENWELL:

Follow these steps to ensure the safe and proper erection of a submersible pump in an open well. Safety precautions and critical warnings are marked with a caution symbol (1).

Pre-Erection Preparations

1. Verify Components

- **✓** Inspect the Equipment:
- Check the pump, motor, hoist, delivery pipe, and all accessories for any signs of damage or defects.
- Ensure Tool Availability:
- Gather all necessary tools, including the hoist, lifting clamps, control panel, and safety gear.

Caution: Ensure all components are in working condition. Using defective equipment can cause failures.

2. Inspect the Open Well

- Check Dimensions:
- Measure the well's diameter and depth to confirm compatibility with the pump and motor assembly.
- **Clean the Well:**
- Ensure the well is free of debris or obstructions to avoid damage during installation.
- **Caution:** Do not install the pump in a contaminated well, as it may affect performance.

3. Set Up the Lifting System

- Position the Jib Crane or Hoist:
- Install the jib crane or hoist securely at a stable location near the well.
- Ensure Load Capacity:
- Verify that the lifting system can handle the pump's weight safely.
- **Caution:** An unstable hoist or crane may lead to accidents. Double-check mounting points.

4. Safety Measures

- Wear Protective Gear:
- Equip all personnel with helmets, gloves, and boots for safety.
- ✓ Assign a Team Leader:
- Designate a leader to coordinate the operation and ensure smooth execution.
- **A** Caution: Keep non-essential personnel away from the installation site.

Erection Process

Step 1: Assemble the Pump and Motor

- ✓ Connect the Pump and Motor:
- Securely couple the pump and motor following the manufacturer's instructions.
- Check Alignment:
- Ensure the pump shaft rotates freely and is properly aligned.
- **Caution:** Improper alignment can cause vibration and reduce the pump's lifespan.

Step 2: Connect the Delivery Pipe and Cable

- Attach the Pipe Section:
- Connect the first section of the delivery pipe to the pump's discharge outlet.
- ✓ Secure the Electrical Cable:
- Fasten the cable along the delivery pipe using cable clips to prevent entanglement.
- **Caution:** Ensure cable insulation is intact to avoid electrical hazards.

Step 3: Lower the Pump into the Well

- Attach Lifting Clamps:
- Secure the pump with a lifting clamp and attach it to the hoist.
- Lower the Pump Gradually:
- Use the hoist to lower the pump slowly, ensuring the cable and pipe remain aligned.
- **Caution:** Avoid sudden movements or impacts that may damage the pump.

Step 4: Secure the System

- **✓** Fix the Delivery Pipe:
- Anchor the pipe securely at the well's surface using a flange or bracket.
- ✓ Arrange the Electrical Cable:
- Route the cable safely to prevent damage and tripping hazards.
- **Caution:** Verify that all fastenings are tight before proceeding to electrical connections.

Post-Erection Steps

1. Electrical Connections

- **V** Connect to the Control Panel:
- Wire the pump to the control panel and ensure proper grounding.
- **V** Test Motor Rotation:
- Briefly power the motor to check rotation direction.
- **A** Caution: Incorrect wiring may lead to motor damage.

2. System Testing

- Check Water Flow:
- Start the pump and observe the discharge flow for consistency.
- **✓** Inspect for Issues:
- Look for leaks, unusual noises, or excessive vibration.
- **Caution:** Do not run the pump without sufficient water.

3. Final Adjustments

- ✓ Secure All Components:
- Tighten all fittings and ensure stability of the installation.
- Monitor Initial Operation:
- Observe the pump's performance for the first few hours.
- **(Caution:** Any unusual behavior should be addressed immediately.

Maintenance Tips

- Periodically check cable insulation and pipe joints for wear.
- Ensure the pump is not running dry to prevent motor damage.
- Clean the intake screen and replace worn components as needed.
- **A** Caution: Routine maintenance extends the lifespan and efficiency of the pump.

EB POST HILLS

12 13

(8)

■ 17. INSTALLATION SCHEMATIC DIAGRAM FOR OPI SUBMERSIBLE HORIZONTAL OPENWELL

Į.

■ 18. INSTALLATION CHECKLIST AND PROCEDURE:

Installation Instructions for a Horizontal Openwell System Follow these steps to ensure the safe and proper installation of the pump system. Safety precautions and critical warnings are marked with a caution symbol (!).

Pre-Installation Preparations

1. Verify Components

- **✓** Inspect the Equipment:
- Check the pump, motor, pipes, valves, and electrical accessories for any damage or defects.
- Ensure Tool Availability:
- Gather required tools: wrenches, clamps, pipe sealants, insulation tape, and safety gear.
- **Caution:** Do not use damaged or incompatible components; this may lead to system failure.

2. Assess the Installation Site

- Check Well Dimensions:
- Measure the well depth and diameter to ensure compatibility.
- **V** Ensure a Stable Foundation:
- Prepare a stable base for the pump unit to prevent vibrations and misalignment.
- **Caution:** An unstable foundation may cause misalignment, leading to mechanical damage.

3. Electrical & Safety Preparations

- Ensure Proper Power Supply:
- Verify voltage, phase, and capacity of the electrical source as per pump specifications.
- ✓ Install Earthing System:
- Proper grounding is mandatory to prevent electrical hazards.
- **A** Caution: Incorrect wiring may lead to electrical failures or hazards.

Installation Process

Step 1: Position the Pump

- ✓ Place the Pump Unit:
- Install the pump on a solid, vibration-free foundation near the well.
- Align Properly:
- Ensure proper alignment between pump and suction pipe to prevent cavitation.
- **A** Caution: Misalignment can cause premature wear and operational issues.

Step 2: Connect the Suction Pipe

- **Attach the Suction Pipe:**
- Connect the suction pipe to the pump inlet using proper sealing materials.
- **✓** Prime the Pipe:
- Fill the suction pipe with water to remove air pockets.
- **Caution:** Airlocks in the suction pipe can cause dry running and damage the pump.

Step 3: Connect the Delivery Pipe

- **✓** Secure the Delivery Pipe:
- Attach the delivery pipe to the pump's discharge outlet with leak-proof joints.
- ✓ Install a Check Valve:
- Position a non-return valve (NRV) to prevent backflow.
- **A** Caution: A missing NRV may lead to reverse water flow, causing damage.

Step 4: Install the Control Panel

- **Mount the Panel:**
- Secure the control panel in a dry, accessible location.
- **Wire the Motor:**
- Connect the submersible cable securely to the motor terminals.
- **(Laution:** Loose connections may cause voltage drops and motor failure.

Step 5: Secure the Cable & Pipes

- ✓ Fasten the Electrical Cable:
- Use clamps to secure the cable along the pipe at regular intervals.
- Check for Abrasions:
- Ensure the cable insulation is intact to prevent electrical hazards.
- **(Laution:** Unsecured cables can get damaged, leading to short circuits.)

Step 6: Test the System

- **✓** Turn on the Pump:
- Start the motor and check for proper water discharge.
- **Check for Leaks:**
- Inspect pipe joints, NRVs, and seals for any water leakage.
- **A** Caution: Running the pump without water flow can overheat and damage the motor.

Post-Installation Checks

- Monitor Initial Operation:
- Observe performance for a few cycles to ensure smooth operation.
- **▼** Tighten Loose Connections:
- Recheck and secure any loose bolts, joints, and wiring.
- **A** Caution: Ignoring minor leaks or loose fittings may cause future system failures.

Maintenance Tips

- Conduct periodic inspections of pipes, cables, and control panels.
- Avoid dry running the pump to prevent motor burnout.
- Regularly clean filters and NRVs to maintain efficiency.
- **Caution:** Lack of maintenance may lead to operational breakdowns.

Following these instructions ensures efficient and long-lasting performance of your pump system!

The brand you can trust

